62 research outputs found

    Two emerging phenotypes of atypical inclusion body myositis: illustrative cases

    Get PDF
    OBJECTIVES: Sporadic inclusion body myositis (IBM) is the most common acquired myopathy in those aged above 50. It is classically heralded by weakness in the long finger flexors and quadriceps. The aim of this article is to describe five atypical cases of IBM, outlining two potential emerging clinical subsets of the disease. METHODS: We reviewed relevant clinical documentation and pertinent investigations for five patients with IBM. RESULTS: The first phenotype we describe is young-onset IBM in two patients who had symptoms since their early thirties. The literature supports that IBM can rarely present in this age range or younger. We describe a second phenotype in three middle-aged women who developed early bilateral facial weakness at presentation in tandem with dysphagia and bulbar impairment followed by respiratory failure requiring non-invasive ventilation (NIV). Within this group, two patients were noted to have macroglossia, another possible rare feature of IBM. CONCLUSIONS: Despite the classical phenotype described within the literature IBM can present in a heterogenous fashion. It is important to recognise IBM in younger patients and investigate for specific associations. The described pattern of facial diplegia, severe dysphagia, bulbar dysfunction and respiratory failure in female IBM patients requires further characterisation. Patients with this clinical pattern may require more complex and supportive management. Macroglossia is a potentially under recognised feature of IBM. The presence of macroglossia in IBM warrants further study, as its presence may lead to unnecessary investigations and delay diagnosis

    Muscle "islands": an MRI signature distinguishing neurogenic from myopathic causes of early onset distal weakness

    Get PDF
    Muscle MRI has an increasing role in diagnosis of inherited neuromuscular diseases, but no features are known which reliably differentiate myopathic and neurogenic conditions. Using patients presenting with early onset distal weakness, we aimed to identify an MRI signature to distinguish myopathic and neurogenic conditions. We identified lower limb MRI scans from patients with either genetically (n=24) or clinically (n=13) confirmed diagnoses of childhood onset distal myopathy or distal spinal muscular atrophy. An initial exploratory phase reviewed 11 scans from genetically confirmed patients identifying a single potential discriminatory marker concerning the pattern of fat replacement within muscle, coined “islands”. This pattern comprised small areas of muscle tissue with normal signal intensity completely surrounded by areas with similar intensity to subcutaneous fat. In the subsequent validation phase, islands correctly classified scans from all 12 remaining genetically confirmed patients, and 12/13 clinically classified patients. In the genetically confirmed patients MRI classification of neurogenic/myopathic aetiology had 100% accuracy (24/24) compared with 65% accuracy (15/23) for EMG, and 79% accuracy (15/19) for muscle biopsy. Future studies are needed in other clinical contexts, however the presence of islands appears to highly suggestive of a neurogenic aetiology in patients presenting with early onset distal motor weakness

    Muscle magnetic resonance imaging involvement patterns in nemaline myopathies

    Get PDF
    OBJECTIVE: Characterise the diagnostic and prognostic value of muscle MRI patterns as biomarkers in a genetically heterogeneous nemaline myopathy (NM) patient cohort. METHODS: Modified Mercuri scoring of lower limb MRI in genetically characterised NM patients referred to the highly specialised service for congenital myopathies at Great Ormond Street Hospital. Findings were compared to clinical data and MRI patterns derived from collated published data. RESULTS: Twenty-seven patients with MRI were identified (8 NEB-NM, 13 ACTA1-NM, 6 TPM3-NM). NEB-NM demonstrated sparing of the thigh. ACTA1-NM demonstrated diffuse thigh involvement, notable in the vasti, sartorius and biceps-femoris, with relative adductor and gracilis sparing. TPM3-NM demonstrated diffuse thigh involvement notable in biceps-femoris and adductor magnus with relative rectus femoris, adductor longus and gracilis sparing. In the lower leg, the soleus and tibialis anterior are notably involved in all three genotypes. NEB-NM and ACTA1-NM demonstrated relative gastrocnemii and tibialis posterior sparing, while TPM3-NM showed significantly more tibialis posterior involvement (P =< 0.05). Comparison of involvement patterns with literature datasets highlighted preferential adductor and gracilis sparing in our ACTA1-NM cohort, consistent tibialis posterior involvement in our TPM3-NM cohort and a distinct MRI pattern from those derived from other NM genotypes and congenital myopathies. Greater tibialis anterior involvement correlated with foot drop (P = 0.02). Greater tibialis anterior and extensor hallucis longus involvement correlated with worse mobility (P =< 0.04). INTERPRETATION: This is the widest NM MRI data set described to date; we describe distinct muscle involvement patterns for NEB-NM, ACTA1-NM and TPM3-NM which may have utility as diagnostic and prognostic biomarkers and aid in genetic variant interpretation

    Muscle MRI in periodic paralysis shows myopathy is common and correlates with intramuscular fat accumulation

    Get PDF
    INTRODUCTION/AIMS: The periodic paralyses are muscle channelopathies: hypokalemic periodic paralysis (CACNA1S and SCN4A variants), hyperkalemic periodic paralysis (SCN4A variants), and Andersen-Tawil syndrome (KCNJ2). Both episodic weakness and disabling fixed weakness can occur. Little literature exists on magnetic resonance imaging (MRI) in muscle channelopathies. We undertake muscle MRI across all subsets of periodic paralysis and correlate with clinical features. METHODS: A total of 45 participants and eight healthy controls were enrolled and underwent T1-weighted and short-tau-inversion-recovery (STIR) MRI imaging of leg muscles. Muscles were scored using the modified Mercuri Scale. RESULTS: A total of 17 patients had CACNA1S variants, 16 SCN4A, and 12 KCNJ2. Thirty-one (69%) had weakness, and 9 (20%) required a gait-aid/wheelchair. A total of 78% of patients had intramuscular fat accumulation on MRI. Patients with SCN4A variants were most severely affected. In SCN4A, the anterior thigh and posterior calf were more affected, in contrast to the posterior thigh and posterior calf in KCNJ2. We identified a pattern of peri-tendinous STIR hyperintensity in nine patients. There were moderate correlations between Mercuri, STIR scores, and age. Intramuscular fat accumulation was seen in seven patients with no fixed weakness. DISCUSSION: We demonstrate a significant burden of disease in patients with periodic paralyses. MRI intramuscular fat accumulation may be helpful in detecting early muscle involvement, particularly in those without fixed weakness. Longitudinal studies are needed to assess the role of muscle MRI in quantifying disease progression over time and as a potential biomarker in clinical trials

    Extra-ocular muscle MRI in genetically-defined mitochondrial disease

    Get PDF
    Conventional and quantitative MRI was performed in patients with chronic progressive external ophthalmoplegia (CPEO), a common manifestation of mitochondrial disease, to characterise MRI findings in the extra-ocular muscles (EOMs) and investigate whether quantitative MRI provides clinically relevant measures of disease

    Ongoing developments in sporadic inclusion body myositis

    Get PDF
    Sporadic inclusion body myositis (IBM) is an acquired muscle disorder associated with ageing, for which there is no effective treatment. Ongoing developments include: genetic studies that may provide insights regarding the pathogenesis of IBM, improved histopathological markers, the description of a new IBM autoantibody, scrutiny of the diagnostic utility of clinical features and biomarkers, the refinement of diagnostic criteria, the emerging use of MRI as a diagnostic and monitoring tool, and new pathogenic insights that have led to novel therapeutic approaches being trialled for IBM, including treatments with the objective of restoring protein homeostasis and myostatin blockers. The effect of exercise in IBM continues to be investigated. However, despite these ongoing developments, the aetiopathogenesis of IBM remains uncertain. A translational and multidisciplinary collaborative approach is critical to improve the diagnosis, treatment, and care of patients with IBM

    Misdiagnosis is an important factor for diagnostic delay in McArdle disease

    Get PDF
    Diagnosis of McArdle disease is frequently delayed by many years following the first presentation of symptoms to a health professional. The aim of this study was to investigate the importance of misdiagnosis in delaying diagnosis of McArdle disease. The frequency of misdiagnosis, duration of diagnostic delay, categories of misdiagnoses and inappropriate medical interventions were assessed in 50 genetically confirmed patients. The results demonstrated a high frequency of misdiagnosis (90%, n = 45/50) most commonly during childhood years (67%; n = 30/45) compared with teenage years and adulthood (teenage: n = 7/45; adult n = 5/45; not known n = 3/45). The correct diagnosis of McArdle disease was rarely made before adulthood (median age of diagnosis 33 years). Thirty-one patients (62%) reported having received more than one misdiagnosis; the most common were “growing pains” (40%, n = 20) and “laziness/being unfit” (46%, n = 23). A psychiatric/psychological misdiagnosis was significantly more common in females than males (females 6/20; males 1/30; p < 0.01). Of the 45 patients who were misdiagnosed, 21 (47%) received incorrect management. This study shows that most patients with McArdle disease received an incorrect explanation of their symptoms providing evidence that misdiagnosis plays an important part in delaying implementation of appropriate medical advice and management to this group of patients.The authors would like to thank Mr Andrew Wakelin for his great and inspiring work. The authors would also like to thank AGSD-UK, CAPES Foundation, Muscular Dystrophy Campaign and the Euromac Registry for their support

    Omecamtiv mecarbil in chronic heart failure with reduced ejection fraction, GALACTIC‐HF: baseline characteristics and comparison with contemporary clinical trials

    Get PDF
    Aims: The safety and efficacy of the novel selective cardiac myosin activator, omecamtiv mecarbil, in patients with heart failure with reduced ejection fraction (HFrEF) is tested in the Global Approach to Lowering Adverse Cardiac outcomes Through Improving Contractility in Heart Failure (GALACTIC‐HF) trial. Here we describe the baseline characteristics of participants in GALACTIC‐HF and how these compare with other contemporary trials. Methods and Results: Adults with established HFrEF, New York Heart Association functional class (NYHA) ≄ II, EF ≀35%, elevated natriuretic peptides and either current hospitalization for HF or history of hospitalization/ emergency department visit for HF within a year were randomized to either placebo or omecamtiv mecarbil (pharmacokinetic‐guided dosing: 25, 37.5 or 50 mg bid). 8256 patients [male (79%), non‐white (22%), mean age 65 years] were enrolled with a mean EF 27%, ischemic etiology in 54%, NYHA II 53% and III/IV 47%, and median NT‐proBNP 1971 pg/mL. HF therapies at baseline were among the most effectively employed in contemporary HF trials. GALACTIC‐HF randomized patients representative of recent HF registries and trials with substantial numbers of patients also having characteristics understudied in previous trials including more from North America (n = 1386), enrolled as inpatients (n = 2084), systolic blood pressure &lt; 100 mmHg (n = 1127), estimated glomerular filtration rate &lt; 30 mL/min/1.73 m2 (n = 528), and treated with sacubitril‐valsartan at baseline (n = 1594). Conclusions: GALACTIC‐HF enrolled a well‐treated, high‐risk population from both inpatient and outpatient settings, which will provide a definitive evaluation of the efficacy and safety of this novel therapy, as well as informing its potential future implementation

    Muscle "islands": An MRI signature distinguishing neurogenic from myopathic causes of early onset distal weakness

    No full text
    Muscle MRI has an increasing role in diagnosis of inherited neuromuscular diseases, but no features are known which reliably differentiate myopathic and neurogenic conditions. Using patients presenting with early onset distal weakness, we aimed to identify an MRI signature to distinguish myopathic and neurogenic conditions. We identified lower limb MRI scans from patients with either genetically (n = 24) or clinically (n = 13) confirmed diagnoses of childhood onset distal myopathy or distal spinal muscular atrophy. An initial exploratory phase reviewed 11 scans from genetically confirmed patients identifying a single potential discriminatory marker concerning the pattern of fat replacement within muscle, coined "islands". This pattern comprised small areas of muscle tissue with normal signal intensity completely surrounded by areas with similar intensity to subcutaneous fat. In the subsequent validation phase, islands correctly classified scans from all 12 remaining genetically confirmed patients, and 12/13 clinically classified patients. In the genetically confirmed patients MRI classification of neurogenic/myopathic aetiology had 100% accuracy (24/24) compared with 65% accuracy (15/23) for EMG, and 79% accuracy (15/19) for muscle biopsy. Future studies are needed in other clinical contexts, however the presence of islands appears to highly suggestive of a neurogenic aetiology in patients presenting with early onset distal motor weakness. (C) 2021 Elsevier B.V. All rights reserved
    • 

    corecore